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1.Introduction  
Objective 
♦ Luminosity evolution in Tevatron is driven by 
Ø Elastic and non-elastic scattering on the residual gas 
Ø Elastic and non-elastic scattering on counter-rotating beam  
Ø RF noise & transverse noise (magnetic field fluctuations, quad 

motion, etc.) 
Ø Intrabeam scattering 
Ø Beam-beam effects  

♦ The major aim for the effort is to understand better the beam-
beam effects and other possible limitations of the luminosity 

♦ To make any practical conclusions accurate measurements are not 
less important than good theory  
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IBS 
♦ Factors to be taken into account  
Ø X-Y coupling and actual Tevatron optics  
Ø Non-linear focusing and Finite size of RF bucket  
Ø Simultaneous treatment of single and multiple scattering for || degree of freedom 

RF noise 
♦ Factors to be taken into account 
Ø Spectral density of the noise 
Ø Non-linearity of the potential well 
Ø Finite size of the well 

Measurements 
♦ Longitudinal distribution - Comes from SBD 
Ø Algorithm for computation of distribution function was suggested by Alvin Tollestrup  

• Additional improvements 
§ Restricted fit – f (I) > 0 
§ Optimal binning 

♦ X and Y emittances - Come from flying wires and Sync Light  
Ø Data analysis was done by Sasha Valishev 

• Measured optics 
• Light diffraction for sync light 
• Good prediction for initial luminosity 
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2. Bunch lengthening due to RF phase noise  
Theoretical description 
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Direct measurement of RF noise performed by John Reid  
♦ Microphonics - cavity 

mechanical resonances 
are at synchrotron 
frequency 
Ø Phase feedback 

suppresses 
microphonics by 
more than 20 Db  

♦ Longitudinal damper is 
too noisy 
Ø Damper “white” 

noise hides 
mechanical 
resonances 
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Dependence of Diffusion on the Action 
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♦ Small changes of Synchrotron frequency (RF voltage) can significantly change 

diffusion coefficient if longitudinal damper is off  
♦ The only detailed experimental data we have are for the case when the damper 

is on 
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Development of distribution function on time for 

leading satellites: (-2) – left, and  (-1) – right. Time 
scale [0, 15] corresponds to 37 hours of store time 

• Both distributions are corrected for the 
satellite lifetime of 230 hours 

• Longitudinal damper is on –  
Spectral density of RF phase noise is close 
to the white noise. 
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Measurements 
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Measured and computed distribution functions for satellite (-2) of Store 3678;  
RF noise spectral density - 42⋅10-12 rad2/Hz, growth rate =dtd /2φ  1.87⋅10-3 rad2/hour 

Previous estimate - 50⋅10-12 rad2/Hz (DoE June 2003 Review)  
Beam lifetime is 230 hour versus >360 of vacuum lifetime 
♦ Diffusion at small amplitudes is described well 
Ø That allows estimate the noise spectral density with better than 20% accuracy 

♦ Diffusion at large amplitudes is not described well: the peak of distribution function is 
moved in for the measured distribution but not for computed one 

♦ Beam-beam effects kill particles with large synchrotron amplitudes which, consequently, 
limits RF bucket size 
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Restoration of longitudinal 
distribution from signal of 
resistive wall monitor  
♦ The method is suggested by Alvin 

Tollestrup 
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♦ Further improvements 
Ø Optimized binning 
Ø Constrained fit (f(I)>0)  
Ø Fitting for the baseline 
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Equal ∆I binning 
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Top – Distr. functions for satellites (-1) and (-2) with constraint and linear fits 
Bottom – results of constraint fit for satellites (-1) and (-2) 
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3. IBS Growth Rates for Gaussian Beams  
♦ Landau collision integral 
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♦ Integration with Gaussian distrib. in all 3 degrees of freedom yields 
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Ø Equations for other degrees of freedom are obtained by cyclic substitution 
Here: 
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♦ The function ( )zyx ,,Ψ  does not depend on 222 zyx ++  and therefore for 
further analysis we choose 1222 =++ zyx  

♦ The function ( )zyx ,,Ψ  is determined so that  
( ) 1,,0 =Ψ xx   ( ) ( ) 2/1,0,0,, −=Ψ=Ψ xxxx   ( ) 0,, =Ψ xxx   (1) 

 

♦ When two parameters coincide the integral can be computed  
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♦ For practical applications the function ( )zyx ,,Ψ  can be approximated as  
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Ø This function has correct asymptotics, satisfy conditions (1), and coincide 
with exact expression within  

Ø ~1% for x=0, ~10% for entire range of parameters 
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Accelerator specific corrections 
♦ General Recipe  
Ø Find local density and velocity spreads and compute average temperature 

growth across the beam cross-section. Then average along beam orbit. 
• Take into account that axis of 3D ellipsoid of velocities not necessarily 

coincide with local coordinate frame axis 
• Take into account additional excitation of transverse 

degrees of freedom due to non-zero dispersions 
♦ Details 
Ø For Tevatron significant simplifications are due to 

§ yx v,vv || <<   in the beam frame 
§ yx QQ ,>>γ  

• After averaging over the bunch length and the cross-section 
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§ Here 1θ  and 2θ  are ellipse semi-axis in the plane of local angular 
spreads (x’-y’ plane) and 1σ  and 2σ  are ellipse semi-axis in the x-y 
plane 
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Ø Uncoupled motion 
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• Additional transverse emittance growth due to finite dispersion 
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Top - Beam size projections and 
ellipsoid semi-axis 
Bottom – projections for angular 
spreads and ellipsoid semi-axis 

Ø X-Y coupled motion 
• Measured Tevatron optics with 

coupling has been used in calculations!!! 
• Coupling effects are sufficiently small 
§ little corrections for density and 

angular spread 
• Emittance growth related to mode 2 (y 

mode) is about 5% of mode 1 (x-mode) 
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• In measurements both modes contribute to the beam sizes 
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• That yields for observed emittance growth  
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• That leads to an increase of observed coupling  
§ 1.0≈xyκ  at Synchrotron light emittance monitor 
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4. IBS in Non-linear Longitudinal Well  
Diffusion equation 
♦ In the case yx v,vv || <<  the friction in Landau collision integral can be 

neglected  
♦ Diffusion equation 
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• I is the action and ω is the frequency for  
dimensionless Hamiltonian of synchrotron motion:   

• Diffusion coefficient depends on distribution, (I) 
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Simultaneous treatment of single and multiple scattering 
♦ Boltzmann type equation 
Ø In the case ⊥<< vv || one can write for Coulomb scattering in long. direction 
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    )( Iaa ≡  is the motion amplitude 
Ø The kernel is symmetric:  ),(),( IIWIIW ′=′ ,  
Ø The kernel divergence needs to be limited at the minimum action change 

corresponding to the maximum impact parameter  
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Numerical model 
♦ Set of bins 
Ø Transition probabilities 

• Nearby bins – diffusion 
equation to resolve divergence 
of ( )IIW ′,  

• Far away bins – transition 
probabilities are described by 

( )IIW ′,  
• Particle loss outside bucket 

need to be added 
♦ In matrix form 

tnnn ∆+=+ Wfff 1  
W – is matrix of transition probabilities. It is a symmetric matrix  
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on time for IBS. Measured initial 
distribution is used 



Luminosity Evolution in Tevatron, Lebedev, Run II meeting, December 16, 2004 22 

5. Comparison with experiment for Store 3678 
Fitting parameters 
♦ Effective vacuum – 1.2⋅10-9 Torr of N2 equivalent 
Ø For chosen gas composition it yields 

• Beam lifetime - 360 hour 
• Emittance growth – 0.21 mm mrad/hour 

Ø Beam lifetime at low intensity more than 600 hour 
• Vacuum worsening with beam intensity is possible reason 
• Neglected beam-beam effects can be another reason 

♦ p – pbar cross-section for particle loss - 69 mbarn 
♦ Coupling parameters: κp = 0.37, κpbar = 0.32 
♦ Initial measured transverse emittances were multiplied by 1.01 to obtain 

correct initial luminosity 
♦ Amplification of IBS diffusion for pbars – 2.4 
Ø Beam-beam effects 
Ø Noise in magnets  

• bunch motion at betatron sideband ~0.1 µm was observed and is 
consistent with observed increase in diffusion 
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Additional constraints 
♦ RF noise was measured for protons by observation of evolution for longitudinal 

distribution (Damper is on) 
Ø The same noise was used for pbar beam 
Ø Suppression of longitudinal emittance growth by longitudinal damper was 

neglected. For protons it is small contribution anyway. 
♦ Beam-beam effects are completely neglected 
Ø Increased transverse diffusion 
Ø Limitation of longitudinal acceptance 

• Well-observed for pbars 
• Less pronounced for protons 

♦ Aperture limitation due to scrapers 
♦ D0 luminosity was taken to be equal to CDF luminosity 
Ø All measurements we presently have point out that the actual difference 

should be smaller than the difference between luminosities reported by 
CDF and D0 
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Luminosity and beam intensities evolution for Store 3678 
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Dependence of computed and measured 
bunch length on time for Store 3678  

♦ Good coincidence for proton bunch 
lengthening.. It is not affected by 
choice of free parameters 

♦ p  lengthening is affected by RF noise (~20% of IBS): Sf=42⋅1012 rad2s, dσφ
2/dt|t=0= 0.187 rad2/hour  

♦ Sextupole power supply was lost at t=28 hour  =>  beam-beam effects 
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♦ Both proton and pbar emittance growths have contributions from scattering at 

the residual gas. At the store beginning it gives: 
 • 12% of IBS for protons  • 60% of IBS for pbars 

Ø Gas pressure was set by matching particle loss due to nuclear scattering 
♦ For pbars there is unaccounted emittance growth (2.4 times of IBS) 
Ø Beam-beam effects 
Ø Noise in magnets  
Ø Preliminary measurements of bunch motion at ωb yields σ = 0.1 µm  

• That is consistent with the measurements 
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Computed linear tune shifts due to beam-beam effects 

 
♦ Run II design value is achieved for pbars 
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Particle loss due to different mechanisms  

 
• 33% of lost protons are lost due to luminosity 
• 88% of lost pbars are lost due to luminosity  
• 6.7% of total number of protons are lost due to luminosity 
• 48% of total number of pbars are lost due to luminosity  
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Conclusions 
♦ Theory describes well observed evolution of parameters for 

proton beam 
♦ Observed discrepancy for antiprotons is related to other 

effects which are presently not taken into account 
Ø Noise in magnets and beam-beam effects are the most 

probable reasons 
♦ To get such good agreement the improvements in theory as well 

as in experiment have been required 
♦ The developed IBS theory was applied to the longitudinal 

emittance growth in Recycler. Good agreement has been 
obtained 
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Backup transparencies 
1. Emittance Growth Rates for X-Y coupled motion in the case 
of pancake distribution 
Ø Growth rates for the momentum spread in the bunched beam 

• After averaging over the bunch length and the cross-section 
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Ø Optics is described with Mais-Ripken beta-functions 
• For coupled motion the eigen-vectors can be parameterized as 
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• To find beam sizes and local angular spreads First introduce bilinear 
form describing the beam ellipse in 4D space 
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Ø Then we can write the distribution function in the following form 
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Ø Beam sizes 
• Size projections 
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Ø Local transverse velocity spreads 
• Bilinear form for angular spreads 
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• Ellipse semi-axis in the plane of local angular spreads (x’-y’ plane) 
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Ø Additional transverce emittance growth due to finite dispersion 
• For uncoupled motion 
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§ Then the emittance growth is 
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• Expressing matrix V through beta-functions we finally obtain 
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• Finally, for ultra-relativistic beam ( yx QQ ,>>γ ), we obtain 
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